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   Abstract -- This paper addresses epileptic event 

forewarning. One novel contribution is the use of graph 

theoretic measures of condition change from time-delay-

embedding states. Another novel contribution is better 

forewarning of the epileptic events from two channels of 

scalp EEG, with a total true rate of 58/60 (sensitivity = 

39/40, specificity = 19/20). Challenges include statistical 

validation in terms of true positives and true negatives; 

actionable   forewarning in terms of time before the 

event; detection of the event to reset the forewarning 

algorithm; and implementation in a practical device.  

I. INTRODUCTION 

Epilepsy afflicts nearly three million people in the US, with 

two-thirds controllable with drugs, which have bad side 

effects (e.g., sleepiness, fuzzy thinking). Epilepsy surgery 

can cure 7-8%, while risking cognitive impairments. No 

therapy is effective for intractable epilepsy (25%). Seizure 

disorders are typically associated with multiple 

hospitalizations, incurring high medical costs. Reliable 

forewarning would allow the patient to stop hazardous 

activity, lie down in a quiet place, undergo the seizure, and 

then return to normal activity. Reliable forewarning also 

allows a new paradigm of constant monitoring, rather than 

continuous medication. Other timely preventive steps include 

taking medication to preclude the impending seizure for 

those responsive to anti-seizure drugs, requesting emergency 

responders, and/or alerting caregivers or one's physician.  

Reliable event forewarning could also be used in add-on 

software in epilepsy monitoring units and for drug discovery. 

 

Patients can predict their seizures hours before an event at a 

level above chance via trigger factors or mood state [1], [2], 

[3]. Research toward automation of seizure prediction has 

been pursued since the 1970’s [4]. International Workshops 

on Seizure Prediction are being held:  Bonn, Germany in 

2002 [5]; Washington, DC in 2006; Friedberg, Germany in 
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2007 [6]; Kansas City, USA in 2009 [7]; and Dresden, 

Germany in 2011 (http://iwsp5.org/). This research suggests 

that prediction of seizures (and other biomedical events) may 

be possible, but is a grand-challenge-class problem. 

 

This paper is organized, as follows. Section II discusses the 

specific challenges in forewarning Section III describes the 

analysis approach to address the challenges. Section IV 

provides discussion, while Section V gives the conclusions. 

II. CHALLENGES 

Mormann et al. [8] suggest that a preictal state may occur 

from minutes to hours before a seizure, depending to the 

analysis technique. This finding implies that condition 

change can be used for forewarning. Mormann et al. [9] 

recently proposed guidelines for the methodological quality 

of studies of seizure forewarning, focusing on pre-ictal state 

identification in blinded, prospective, randomized clinical 

trials. Mormann [10] provides additional details on seizure 

prediction. A 2011 research summary [11] found that no 

algorithm provides better-than-chance seizure prediction in 

statistical tests. This last finding presents a huge challenge to 

the research community. This paper addresses these 

challenges one-by-one, namely: statistical validation, timely 

prediction, event detection, and practical implementation. 

 

Statistical validation of forewarning requires measures of 

success. One measure is the number of true positives (TP) 

for known event datasets (Ev), to yield the true positive rate 

(sensitivity) of TP/Ev. A second measure is the number of 

true negatives (TN) for known non-event datasets (NEv). The 

true negative rate is TN/NEv (specificity). The goal is a 

sensitivity and specificity of unity. Consequently, minimizing 

the distance from ideal (D = prediction distance) is an 

appropriate objective function for any event type:   

 

        D = {[1 – (TP/Ev)]
2
 + [1 – (TN/NEv)

2
}

1/2
. (1)                  

 

Excessive false positives (inverse of a true negative) will 

cause real alarms to be ignored, and needlessly expend 

caregiver resources. False negatives (inverse of a true 

positive) provide no forewarning of seizure events. 

 

The goal is enough forewarning to stop or mitigate an event. 

Patients and caregivers [12] suggested 1-6 hours for safety, 

planning the day, and “driving myself to the hospital.” Non-

parent caregivers preferred 25 minutes to 1 hour for travel to 

the patient’s location. Others gave 3-5 minutes, because 

longer forewarning was seen as more stressful to the patient. 

A recommendation from the International Workshop on 
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Seizure Prediction classifies an indication of <10 seconds 

prior to the event as “early detection” [13]. An alternative 

would be an estimate of the time until the event.  

 

A third challenge is reliable event detection, which is distinct 

from seizure prediction. Reliable detection (ideal = 100%) is 

needed to properly reset a forewarning algorithm. Indeed, 

failure to detect an event means that no reset is done. False 

indication of a non-event would result in restarting the 

forewarning analysis, when no such reset is appropriate. No 

seizure detection algorithm reaches the ideal.  

 

The fourth challenge is a practical implementation. A vital 

feature involves long-term, low-noise acquisition of brain 

wave (electroencephalogram – EEG) data. Sub-dural or 

intra-cranial electrodes are invasive and non-ambulatory, 

with risks of infection and surgical damage. Another feature 

is a portable, low-cost device, allowing wireless notification 

of emergency responders with automated identification of the 

patients’ location. Smart-phones are ubiquitous for end-user 

applications, as a low-cost, commercial device with enough 

computing power for real-time analysis. Smart-phones allow 

automated calls to emergency responders or caregivers, and 

include a global-positioning unit that facilitates response to 

the patient’s exact location.  

 

A fifth challenge is that event forewarning should not depend 

on certain variables (e.g. patient’s age, sex, event onset time, 

medications, ambulatory setting, event sub-type, activity). 

Moreover, forewarning should anticipate multiple real events 

in a continuous stream of EEG, while providing no 

indication during inter-ictal periods. Practical forewarning 

should be obtainable from one (or a few) data channel(s).  

 

III. FOREWARNING ANALYSIS 

 

We use one channel of scalp EEG as a measure of the noisy 

synchronous dynamics in cortical neurons over an area of 

roughly 6 cm
2
.  These data were uniformly sampled in time, 

ti, at 250 Hz, giving N time-serial points in analysis window 

(cutset), ei = e(ti). Data acquisition was under standard 

human-studies protocols from 41 temporal- lobe-epilepsy 

patients (ages from 4 to 57 years; 36 datasets from females, 

and 24 datasets from males). The datasets range in length 

from 1.4 to 8.2 hours (average = 4.4 hours). Data 

characterization included patient activity. Forty datasets had 

seizures, and twenty had no event [14]. 

 

One novel improvement of the present work is better 

forewarning, using two scalp EEG electrodes. Previous work 

[15] identified this location at the right, frontal area (F8 - 

FP2) of the scalp, in the 10-20 system. In contrast, earlier 

work obtained channel-consistent forewarning across 

nineteen EEG channels [16].  The garbage-in-garbage-out 

syndrome is avoided by rejecting inadequate data [17].  

 

A novel zero-phase, quadratic filter enables analysis of scalp 

EEG by removing electrical activity from eye blinks and 

other muscular artifacts, which otherwise obscure the event 

forewarning. This novel filter retains the nonlinear amplitude 

and phase information [18]. The filter uses a moving window 

of 2w + 1 points of ei-data, which are fitted to a parabola in a 

least-square sense, yielding N – 2w points of artifact data, fi. 

The residual (artifact-filtered) signal has essentially no low-

frequency artifacts, gi = ei - fi.  

 

A novel trade-off is required between coarseness in the data 

to exclude noise, and precision in the data to accurately 

follow the dynamics. Thus, the artifact-filtered data (gi) are 

symbolized into S discrete values, si, which are uniformly 

distributed between the maximum (gx) and minimum (gn) in 

the first base case cutset. Uniform symbols are generated by 

the form: 0  si = INT[S (gi - gn)/(gx - gn)]  S – 1. Here, INT 

converts a decimal number to the closest lower integer.  

 

Takens’ theorem [19] gives a smooth, non-intersecting 

dynamical reconstruction in a sufficiently high dimensional 

space by a time-delay embedding. The symbolized data are 

converted into unique dynamical states by the time-delay-

embedding vector, yi: 

 

yi = [si, si+L , . . . , si+(d–1)L].          (2) 

 

Takens’ theorem says that the yi-states are diffeomorphic to 

the underlying dynamics, as a way to capture topology 

(connectivity and directivity). The time-delay lag is L, which 

must not be too small (making si and si+L indistinguishable) 

or too large (making si and si+L independent by long-time 

unpredictability). The embedding dimension is d, which must 

be sufficiently large to capture the dynamics, but not too 

large to avoid over-fitting. 

 

Time-delay states from Eq. (2) are nodes. The process flow, 

yi  yi+M, forms state-to-state links. The set of nodes and 

links provide a formal, diagrammatic construction, called a 

“graph.” This representation gives topologically-invariant 

measures that are independent of any unique labeling of 

individual nodes and links [20].  

 

Another novel improvement uses graph-invariant measures 

between cutsets: (1) nodes in graph A but not in B; (2) nodes 

in B but not in A; (3) links in A but not in B; and (4) links in 

B but not in A. These measures sum the absolute value of 

differences, which are better than traditional nonlinear 

measures that use a difference of averages. Each measure is 

normalized to the number of nodes (links) in A (for A not in 

B) or in B (for B not in A). These features, V, are used to 

classify the EEG as giving forewarning or not. The analysis 

obtains a vector of mean dissimilarities, V, and matching 

standard deviations, , by comparison among the B(B–1)/2 

combinations of the B base-case graphs. Subsequent test-

case graphs are then compared to each of the B base-case 

graphs to get an average dissimilarity vector, v. Forewarning 

indication is several successive instances (K) above a 

threshold (UT) for each of J features, U(V) = |v –V|/. 



  

 The training analysis minimizes the prediction distance, DN 

(or the smallest forewarning time, if no improvement occurs 

in DN). There are 13 training parameters, namely {B, d, J, K, 

L, M, N, S, UT, w}; UT is a vector corresponding to the J 

features. Random and exhaustive searches are used because 

the prediction distance has very irregular, fractal features, as 

shown in Figure 1. Figure 2 shows a typical receiver-

operating space. Figure 3 shows a typical distribution of 

forewarning times. The results are a significant improvement 

over the previous work [15] toward addressing the challenge 

of lowering the rate of false positives and false negatives. 

Earlier work showed detection of several successive seizure 

events in the same dataset (e.g., Figure 8 of [14]), toward 

addressing the challenge of reliable event detection. 
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Figure 1. Minimum prediction distance (DN) versus N and M 

(other parameters: d=7, S=3, L=56, w=29, B=12). The colors 

correspond to the following values of DN: red (0.0559); 

yellow (0.0707); green (0.0901); cyan (0.1031); blue 

(0.1118); black (0.1250); and white (0.1346). 

 

IV. DISCUSSION  

Our premise is that the right-frontal region acts as a filter for 

pre-ictal condition change, as a phase transition in the brain 

dynamics [21] that can be induced by noise [22]. Pittau et al. 

[23] reviewed the recent technical literature on sound-

induced (musicogenic) seizures, which activate the fronto-

temporo-occipital area. Inversely, soothing music (e.g., 

Mozart’s double piano sonata K448) decreases the intensity 

and frequency of epileptic seizures [24].  

 

These results are encouraging, despite several limitations, 

which are discussed next. (1) We analyzed 60 datasets, 40 

with epileptic events and 20 without events. Much more data 

(hundreds of datasets) are needed for strong statistical 

validation. (2)  All  60  datasets  are  used  as  a  training set, 

limiting the statistical strength of the  results.  However, the 

alternative involves dividing these 60 into 30 training and 30 

test sets (for example), giving  less  adequate  statistics.  We 

have 142 uncharacterized datasets, which will be used as test  

 
Figure 2. Receiver-operating space (TP=39/40, TN=19/20). 

The colors show DN values: red (0.0559); magenta (0.0707); 

green (0.0901); cyan (0.1031); blue (0.1118); black (0.13). 
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Figure 3. Distribution of forewarning times, TFW. Solid black 

line is the occurrence frequency (arbitrary units) in 1-hour 

bins. The dashed blue line is the cumulative distribution of 

TFW versus time. The red H-bar with the star in the middle 

indicates the mean value of TFW (1.9 hours) and the sample 

standard deviation. Parameter values for this example are: 

B=12, d=7, J2, K=15, L=56, M=77, N=49716, S=3, 

UT={0.3638, 0.0049,-0.1780, 0.0107}, w=29. 

 

data after their characterization. (3) These data are from 

controlled clinical settings, rather than an uncontrolled (real-

world) environment. (4) The results depend on careful 

adjustment of training parameters. (5) Only physician-

selected portions of the EEG are available, rather than the 

full monitoring period. (6) The present approach uses 

retrospective analysis of archival data on a desktop 

computer. Real-world forewarning requires analyst-

independent, prospective analysis of real-time data on a 

portable device. Prospective data were unavailable for this 
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analysis. (7) The results give forewarning times of 5.1 hours 

or less. A time-to-event estimate is needed. (8) All EEG 

involved temporal lobe epilepsy; other kinds of epilepsy 

need to be included. (9) A prospective analysis of long-term 

continuous data is the acid test for any predictive approach, 

and has not been done. Clearly, much work remains to 

address these issues. 

V. CONCLUSIONS  

This work improves epilepsy forewarning by analysis of 

topological invariants, as guaranteed by Takens’ theorem 

[19] in a sufficiently high-dimensional space. The discrete, 

time-delay embedding states, yi, are nodes with the state-to-

state links forming a “graph.” Graph theorems [20] guarantee 

measures that depend only on the graph structure. The results 

of this analysis are an accuracy of 58/60 (97%) with a 

sensitivity of 39/40 (97.5%) and a specificity of 19/20 (95%) 

from one (right frontal) bipolar channel. Since the theorems 

are data independent, this forewarning method also works for 

other biomedical and equipment examples [25]. 
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